Integrability and L1-convergence of Rees-stanojević Sums with Generalized Semiconvex Coefficients

نویسنده

  • KULWINDER KAUR
چکیده

The problem of L1-convergence of the Fourier cosine series (1.1) has been settled for various special classes of coefficients. Young [6] found that an logn= o(1), n→∞ is a necessary and sufficient condition for cosine series with convex (∆an ≥ 0) coefficients, and Kolmogorov [5] extended this result to the cosine series with quasi-convex ( ∑∞ n=1n|∆an−1| < ∞) coefficients. Later, Garrett and Stanojević [3] using modified cosine sums (1.2), proved the following theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrability and L- Convergence of Rees-stanojević Sums with Generalized Semi-convex Coefficients of Non-integral Orders

be the Fourier cosine series. The problem of L-convergence of the Fourier cosine series (1.1) has been settled for various special classes of coefficients. Young [9] found that an logn = o(1), n → ∞ is a necessary and sufficient condition for the L-convergence of the cosine series with convex (△an ≥ 0) coefficients, and Kolmogorov [8] extended this result to the cosine series with quasi-convex ( ∞

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Some New Modified Cosine Sums and L1-convergence of Cosine Trigonometric Series

In this paper we introduce some new modified cosine sums and then using these sums we study L1-convergence of trigonometric cosine series.

متن کامل

CONVERGENCE IN MEAN OF WEIGHTED SUMS OF { a , , } - COMPACTLY UNIFORMLY INTEGRABLE RANDOM ELEMENTS IN BANACH SPACES

The convergence in meaaa of a veighted sum k a.k(Xk EXk) of random elements in a separable Banach space is studied under a new hypothesis which relates the random elements with their respective weights in the sum: the {a.. }-compactly uniform integrability of {X. }. This condition, which is implied by the tightness of {X,,} and the {a,,k }-uniform integrability of {[IX,, II}, is weaker than the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002